
Grant Agreement no. 777167

ΒΟUNCE
Predicting Effective Adaptation to Breast Cancer to Help Women to BOUNCE Back

Research and Innovation Action
SC1-PM-17-2017: Personalised computer models and in-silico systems for well-being

Deliverable: 5.1 BOUNCE Conceptual & Reference Architecture

Due date of deliverable: (10-31-2018)
Actual submission date: (16/11/2018)

Start date of Project: 01 November 2017 Duration: 48 months

Responsible WP: FORTH

The research leading to these results has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No 777167

Dissemination level

PU Public x

PP Restricted to other programme participants (including the Commission Service

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (excluding the Commission Services)

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 2 of 70

© BOUNCE Public

0. Document Info

0.1. Author

Author Company E-mail

Lefteris Koumakis FORTH koumakis@ics.forth.gr

Haris Kondylakis FORTH kondylak@ics.forth.gr

Galatia Iatraki FORTH giatraki@ics.forth.gr

Maria Hatzimina FORTH hatzimin@ics.forth.gr

Panagiotis Argyropaidas FORTH parg@ics.forth.gr

Kostas Marias FORTH kmarias@ics.forth.gr

Kostas Perakis SiLo kperakis@ep.singularlogic.eu

Gianna Tsakou SiLo gtsakou@singularlogic.eu

Juha Salonen Noona juha.salonen@noona.com

Katerina Argyri ICCS kargyri@mail.ntua.gr

Nikolaos Christodoulou ICCS nikchris@mail.ntua.gr

Eleni Kolokotroni ICCS ekolok@mail.ntua.gr

Georgios Stamatakos ICCS gestam@mail.ntua.gr

Evangelos Karademas FORTH karademas@uoc.gr

Akis Simos FORTH akis.simos@gmail.com

0.2. Documents history

Document
version #

Date Change

V0.1 15/09/2018 Starting version, template

V0.2 20/09/2018 Definition of ToC

V0.3 17/10/2018 First complete draft

V0.4 22/10/2018 Integrated version (send to WP members)

V0.5 24/10/2018 Updated version (send to project internal reviewers)

Sign off 09/11/2018 Signed off version (for approval to PMT members)

V1.0 16/11/2018 Approved Version to be submitted to EU

mailto:koumakis@ics.forth.gr
mailto:kondylak@ics.forth.gr
mailto:giatraki@ics.forth.gr
mailto:parg@ics.forth.gr
mailto:kmarias@ics.forth.gr
mailto:kperakis@ep.singularlogic.eu
mailto:gtsakou@singularlogic.eu
mailto:juha.salonen@noona.com
mailto:kargyri@mail.ntua.gr
mailto:nikchris@mail.ntua.gr
mailto:ekolok@mail.ntua.gr
mailto:gestam@mail.ntua.gr
mailto:karademas@uoc.gr
mailto:akis.simos@gmail.com

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 3 of 70

© BOUNCE Public

0.3. Document data

Keywords Software architecture

Editor Address data Name: Lefteris Koumakis
Partner: FORTH
Address: N. Plastira 100, Bassilika Vuton, Heraklion Greece
Phone: +30 2810 391424
Fax:
E-mail: koumakis@ics.forth.gr

Delivery date

mailto:koumakis@ics.forth.gr

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 4 of 70

© BOUNCE Public

1. Table of Contents
0. Document Info ... 2

0.1. Author .. 2

0.2. Documents history .. 2

0.3. Document data .. 3

1. Table of Contents ... 4

2. Introduction ... 7

2.1. Software architecture methodologies .. 7

2.1.1. Scrum .. 7

2.2. Software Architecture Styles ... 9

3. BOUNCE reference architecture .. 10

3.1. Stakeholders .. 10

3.2. User scenarios ... 10

3.2.1. Information technology user scenarios ... 12

3.3. High Level architecture .. 15

3.3.1. Semantic tier .. 15

3.3.2. Applications (models) Tier ... 16

3.3.3. Security Tier & security by design .. 19

4. BOUNCE components, interfaces and diagrams .. 22

4.1. Procedures ... 22

4.1.1. Components and interfaces reporting ... 22

4.1.2. Sequence reporting .. 22

4.1.3. Deployment reporting .. 22

4.2. Personal Health System ... 23

4.2.1. Component and interfaces ... 23

4.2.2. Sequence diagram .. 25

4.2.3. Deployment diagram .. 26

4.3. Authentication, authorization and role management .. 27

4.3.1. Component and interfaces ... 27

4.4. Data Anonymizer ... 29

4.4.1. Component and interfaces ... 29

4.4.2. Sequence diagram .. 30

4.4.3. Deployment diagram .. 31

4.5. Data Aggregator & Harmonizer ... 31

4.5.1. Component and interfaces ... 31

4.5.2. Sequence diagram .. 32

4.5.3. Deployment diagram .. 32

4.6. Data Cleanser ... 33

4.6.1. Component and interfaces ... 33

4.6.2. Sequence diagram .. 35

4.6.3. Deployment diagram .. 36

4.7. Temporary Research Supporting Tool ... 38

4.7.1. Component and interfaces ... 38

4.7.2. Sequence diagram .. 39

4.7.3. Deployment diagram .. 40

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 5 of 70

© BOUNCE Public

4.8. Models Repository ... 40

4.8.1. Component and interfaces ... 40

4.8.2. Sequence diagram .. 50

4.8.3. Deployment diagram .. 51

4.9. In Silico Prediction Repository ... 51

4.9.1. Component and interfaces ... 51

4.9.2. Sequence diagram .. 61

4.9.3. Deployment diagram .. 62

4.10. Execution Engine .. 62

4.10.1. Component and interfaces ... 62

4.10.2. Sequence diagram .. 63

4.10.3. Deployment diagram .. 64

4.11. Decision Support System ... 64

4.11.1. Component and interfaces ... 64

4.11.2. Sequence diagram .. 66

4.11.3. Deployment diagram .. 66

5. Initial BOUNCE reference Architecture.. 67

6. Conclusions .. 68

Appendixes ... 69

Appendix A – Template for component description .. 69

Appendix B – Template for REST service specification ... 70

Table of Figures
Figure 1: Traditional “waterfall” development .. 8

Figure 2: Scrum iterative process .. 8

Figure 3: Steps in the BOUNCE care path .. 11

Figure 4: BOUNCE high-level architecture. .. 15

Figure 5: Initial Semantic Tier Architecture of BOUNCE .. 16

Figure 6: Sequence diagram of Noona patient User interface .. 25

Figure 7: Sequence diagram of Noona healthcare professionals User interface 26

Figure 8: Deployment diagram of Noona ... 26

Figure 9: Access Controller sequence diagram ... 28

Figure 10: Access Controller deployment diagram .. 29

Figure 11: Data Anonymizer Sequence Diagram ... 30

Figure 12: Data Anonymizer Deployment Diagram ... 31

Figure 13: Data Aggregator & Harmonizer sequence diagram .. 32

Figure 14: Data Aggregator & Harmonizer deployment diagram .. 33

Figure 15. Data Cleaning workflow ... 34

Figure 16: Data Cleaner Component Sequence Diagram .. 35

Figure 17: Data Cleaner Component design .. 37

Figure 18: Temporary Research Tool Sequence Diagram .. 39

Figure 19: Temporary Research Tool Sequence Diagram .. 40

Figure 20: Key entities composing MR ... 40

Figure 21: Model’s repository sequence diagram ... 50

Figure 22: Model’s repository deployment diagram ... 51

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 6 of 70

© BOUNCE Public

Figure 23: In Silico Prediction repository sequence diagram .. 61

Figure 24: In Silico Prediction Repository deployment diagram .. 62

Figure 25: Execution Engine sequence diagram .. 63

Figure 25: Execution Engine deployment diagram .. 64

Figure 25: Decision Support System sequence diagram .. 66

Figure 26: Decision Support System deployment diagram .. 66

Figure 27: Initial BOUNCE Architecture ... 67

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 7 of 70

© BOUNCE Public

2. Introduction
This deliverable describes the BOUNCE conceptual and reference architecture. An overview of
the current state of the art in technologies relevant to the tools that will be developed and used
within the project has been already reported in Deliverable D1.3. General decisions for the
BOUNCE system architecture have been elaborated after validation and analysing the selected
scenarios and user requirements described in deliverable D1.2 (Requirements & Usage
Scenarios). This document reports on the components and specification of their interfaces,
security and safety issues as well as semantic integration approach for data to be collected in
BOUNCE. In addition, it documents a short summary on requirements and stakeholders and a
description of the elaborated solution strategy including important design decisions.

2.1. Software architecture methodologies

A fundamental purpose of software architecture is to help manage the complexity of software
systems and the modifications that systems inevitably undergo in response to external changes
in the business, organizational, and technical environments. There is no single, industry-wide
definition of software architecture. The term architecture in relation to ISO 42010 is defined1 as:
“Fundamental concepts or properties of a software in its environment embodied in its elements,
relationships, and in the principles of its design and evolution.”
The Software Engineering Institute (SEI) web site includes a long list of definitions for the term
“software architecture”2 such as: “Software Architecture is a statement that addresses the key
concerns of the software stakeholders.

 A stakeholder in a software architecture is a person, group, or entity with an interest in
or concerns about the realization of the architecture.

 A concern about an architecture is a requirement, an objective, an intention, or an
aspiration a stakeholder has for that architecture.”

2.1.1. Scrum

Scrum3, one of the state of the art software architecture methodologies, is based on an iterative
and incremental agile software development methodology for managing product development.
It is a process framework that has been used to manage complex product development since
the early 1990s. Scrum makes clear the relative efficacy of your product management and
development practices so that you can improve. The Agile Manifesto does not provide concrete
steps. Organizations usually seek more specific methods within the Agile movement. These
include Crystal Clear, Extreme Programming, Feature Driven Development, Dynamic Systems
Development Method (DSDM), Scrum, and others.
Scrum is a method for teams working together in order to develop a product. Product
development, using Scrum, occurs in small pieces, with each piece building upon previously
created pieces. The advantages of building products in small steps enables team to respond to
feedback and changes, enhances creativity and reassures that only what is needed will be build.

1 Architecture Descriptions in ISO/IEC/IEEE 42010: http://www.iso-architecture.org/ieee-1471/ads
2 http://www.sei.cmu.edu/architecture/definitions.html
3 https://www.scrum.org/

http://www.iso-architecture.org/ieee-1471/ads
http://www.sei.cmu.edu/architecture/definitions.html
https://www.scrum.org/

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 8 of 70

© BOUNCE Public

Scrum is a simple framework for effective team collaboration on complex projects and provides
a small set of rules that create just enough structure for teams to be able to focus their
innovation on solving what might otherwise be an insurmountable challenge.
Scrum’s early advocates were inspired by empirical inspect and adapt feedback loops to cope
with complexity and risk. It emphasizes decision making from real-world results rather than
speculation. Time is divided into short work cadences, known as sprints, typically one week or
two weeks long. The product is kept in a potentially shippable (properly integrated and tested)
state at all times. At the end of each sprint, stakeholders and team members meet to see a
demonstrated potentially shippable product increment and plan its next steps.
Scrum’s incremental, iterative approach, as shown in Figure 1 and Figure 2 trades the traditional
phases of “waterfall” development for the ability to develop a subset of high-value features first,
incorporating feedback sooner.

Figure 1: Traditional “waterfall” development

Figure 2: Scrum iterative process

For building complex products, Scrum provides structure to allow teams to deal with that
difficulty. However, the fundamental process is incredibly simple, and at its core is governed by
three primary roles:

1) Product Owners determine what needs to be built.
2) Development Teams build what is needed and then demonstrate what they have built.

Based on this demonstration, the Product Owner determines what to build next.
3) Scrum Masters ensure this process happens as smoothly as possible, and continually help

improve the process, the team and the product being created.

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 9 of 70

© BOUNCE Public

While this is an incredibly simplified view of how Scrum works, it captures the essence of this
highly productive approach for team collaboration and product development. When
interdependencies arise, Scrum’s feature teams must learn to use team self-organization
principles to coordinate with other teams.
Methodology to be used for software development will be scrum based on the high level (regular
telcos between the development teams for the integration) while each development team can
follow other software development methodologies internally.

2.2. Software Architecture Styles

Architecture styles4 are high-level patterns and principles that provide an abstract framework
for a family of systems. When many applications share the same structure and the relationships
between the parts are very similar, we call it an “architecture style”.
Advantages of understanding of architectural styles are:

 providing a common language

 providing of opportunities for technology independent higher level conversations,
including patterns and principles, without getting into specifics

The following table lists the major focus areas for organizing of architectural styles and the
corresponding architectural styles.

Category Architectural styles

Communication Service-Oriented Architecture (SOA), Message Bus

Deployment Client/Server, N-Tier, 3-Tier

Structure Component-Based, Object-Oriented, Layered Architecture
Table 1: Focus areas of architectural styles

In Table 2, descriptions of the common architectural styles identified in Table 1 are extended.

Architectural style Description

Client/Server

Separates the system into two applications, client program initiates
contact with a separate server program (usually on a different
machine) for a specific function or purpose. The client exists in the
position of the requester for the service provided by the server.

Component-Based
Architecture

Decomposes application design into reusable functional or logical
components that expose well-defined communication interfaces.

Layered Architecture
Partitions the concerns of the application into layers (stacked
groups) so that changes can be made in one layer without affecting
the others.

Message Bus

An architecture style that prescribes use of a software system that
can receive and send messages using one or more communication
channels, so that applications can interact without needing to know
specific details about each other.

N-Tier / 3-Tier

3-Tier is a client–server/layered architecture in which the
presentation, the application processing, and the data
management are logically separate processes with each process
being located on a physically separate computer. N-Tier is a
generalization where more “tiers” (layers) are introduced.

4 https://hasanalyazidissa.wordpress.com

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 10 of 70

© BOUNCE Public

Object-Oriented

A design paradigm based on division of responsibilities for an
application or system into individual reusable and self-sufficient
objects, each containing the data and the behaviour relevant to the
object.

Service-Oriented
Architecture (SOA)

Refers to applications that expose and consume functionality as a
service using contracts and messages.

Representational State
Transfer (REST)

This is a kind of client-server architectural style where the clients
initiate requests to the servers and the servers return appropriate
responses. Requests and responses convey the representations of
resources where a resource can be anything that may be addressed.

Domain Driven Design
An object-oriented architectural style focused on modelling a
business domain and defining business objects based on entities
within the business domain.

Table 2: Common architectural styles

3. BOUNCE reference architecture

3.1. Stakeholders

The general groups of stakeholders involved or concerned about the BOUNCE project are the
patients, the healthcare experts (oncologist, nurse, social-worker, psychologist), the software
developers and the model providers. While each stakeholder might have different concerns or
requirements over the BOUNCE platform, some of them might share in parallel more than one
role. For example, a technical partner may both be a model provider and a software developer.
A definition of the BOUNCE target groups and actors can be found in Deliverable D1.2.

3.2. User scenarios

Usage scenarios contribute a value in guiding the conversation during the design process, giving
it context and scope. They indicate what to include, exclude, how wide, how deep to go, when
to stop and they provide variations to test the design. User scenarios can be used during many
stages of a system development, being associated with different objectives. Used at the analysis
stage, they can prevent costly error corrections at later stages of the development. At the
current stage, user scenarios will serve as a guiding tool to identify, preview and analyse the
functionalities of the BOUNCE system, as well as to determine the technical requirements, both
functional and non-functional, of the system being developed.

The interaction steps of BOUNCE end users with BOUNCE system throughout the breast cancer
treatment continuum, e.g. the collection of different types of data and the resilience assessment
after diagnosis and at regular visits, as identified during the user requirements procedure
(reported in D1.2) are summarized in Figure 3.

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 11 of 70

© BOUNCE Public

Figure 3: Steps in the BOUNCE care path

The following BOUNCE User Scenarios have been identified, and reported in detail in D1.2, per
end users of the BOUNCE system (oncologist, nurse, social-worker, psychologist, patient,
developer):

1. Oncologist/nurse/social worker: Assesses the need for referral to the psychological
Team/Unit.

2. Oncologist/nurse/psychologist/social worker: Assesses patient progress on psychological
functioning/well-being and resilience levels.

3. Oncologist/social worker: Assesses likely impact of patient biomedical and psychological
characteristics and resilience levels on overall adaptation to illness.

4. Psychologist/social worker: Assesses patient resilience levels and/or psychological well-
being in order to inform the patient and the medical team.

5. Psychologist: Assesses patient need for psychological/counselling intervention.
6. Psychologist: Design optimal intervention strategies, tailored to patient needs and current

health status, and/or evaluate the progress of an ongoing psychological intervention.
7. Patient: Provide necessary information at first login and at predefined time intervals.

BOUNCE has identified six end users (oncologist, nurse, social worker, psychologist, patient,
developer) and seven user scenarios that have been described in D1.2. From the technical point
of view, user scenarios 1, 2, 3, 4, 5 and 6 refer to the BOUNCE Decision Support Tool. This tool
produces (a) an overall “resilience predictor” score, and (b) scores for specific psychological
variables that are important for resilience and adaptation to cancer. Since the six user groups
(oncologist, nurse, social worker, psychologist, patient, developer) interact with the platform in
the same way we group them in one user (“health professionals”). Apart from the health
professional and the patient, three more end users are needed for the realization of the
integrated BOUNCE platform. The first is the developer/modeler that can create, update or
delete statistical, machine learning and mechanistic models. The second is the hospital
administrator who must assure that data from patients, collected with the Noona tool, is
properly anonymized by the Data Anonymization tool before it is pushed into the BOUNCE data
lake. The third end user is the BOUNCE administrator that aspires to safeguard the (internal and
external) datasets coming from the discrete and distributed data information sources are clean

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 12 of 70

© BOUNCE Public

and complete. For the three new end users we also introduce the IT user scenarios (following
the same template as of the user scenarios in D1.2) in section 3.2.1.

3.2.1. Information technology user scenarios

3.2.1.1. Developer (modeler) user scenario

The following two technical use cases are identified for managing the content of Model
Repository (MR).

3.2.1.1.1. Create content in MR

Who is the end-user of the MR: The modeler / developer

What does the user want to accomplish with the MR? To create new content in the MR.
This includes (but is not limited to) model general information, pertinent files (executable,
documentation, etc.) and input/output parameters.

How is the user going to achieve his/her goals?
1. The user accesses the MR either by clicking specific links available in the main BOUNCE

web interface or directly, by entering the MR main URL into their web browser.
2. The user successfully logins by using Username and Password (or creates a new

account).
3. The user begins the sequence for creating a new model by accessing the model general

information input form.
4. The user completes the fields appearing in the model information uploading form (title,

description, comment, version, etc.), then submits the form to store its data in the MR
5. The user opens the parameter information uploading form and sequentially adds all

pertinent parameters. For each parameter, the user completes the pertinent fields
(name, description, data type, data range, default value etc.), then submits the form to
store its data in the MR.

6. The user proceeds to the file uploading form that allows the linking of the model to a
set of files e.g. the executable file. The user completes the fields pertaining to the title,
description, type of file etc. and chooses the file to be uploaded from a browsing
window produced by the OS, then submits the form to store its data in the MR (File is
stored in a folder of a designated folder system in the OS).

7. The user opens the form which allows the association of the model with a set of
references and completes the corresponding fields, then submits the form to store its
data in the MR.

Additional functionalities or interactions: N/A

3.2.1.1.2. View/update/delete/download existing content for MR

Who is the end-user of the MR: The modeler / developer

What does the user want to accomplish with the MR?
To view/update/delete/download the content in the MR.
This includes (but is not limited to) model general information, pertinent files (executable,
documentation, etc.) and input/output parameters.

How is the user going to achieve his/her goals?
- Common Steps

1. The user accesses the MR either by clicking specific links available in the main BOUNCE
web interface or directly, by entering the MR main URL into their web browser.

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 13 of 70

© BOUNCE Public

2. The user successfully logins by using Username and Password (or creates a new
account).

3. The user presses the button ‘Browse the content of the Repository’ in order to view all
the models that are stored in the repository, along with their parameters,
corresponding references, etc.

4. The user selects the desired model.

- Case: Download a model

5. The user chooses the ‘Download the model’ option.
6. The system creates a compressed zip containing all files represented by the objects

associated with selected model.
7. The system sends the compressed zip to the user.

- Case: View / update a model (e.g. add a new file or parameter, etc.)

5. The user chooses the ‘Show me the parameters of this model’ option.
6. The user chooses the ‘Edit this parameter’ option and the pertinent edit form is

presented.
7. The user fills in all necessary information in the corresponding fields (e.g. name,

description, data type, default value etc.).
8. The user clicks on the ‘Save parameter’ button.
9. The same procedure applies for all entities (descriptive information, files, etc.)

- Case: Delete a model related entity

5. The user chooses the ‘Show me the parameters of this model’ option.
6. The user chooses the ‘Delete this parameter’ option and the pertinent edit form is

presented.
7. The same procedure applies for all entities (descriptive information, files, etc.)

- Case: Delete a model

5. The user chooses the ‘Delete this model’ option.

Additional functionalities or interactions: N/A

3.2.1.2. Data anonymization from the hospital administrator user scenario

Who is the end-user of the Data Anonymization tool? The Hospital Administrator

What does the user want to accomplish with the Data Anonymization tool?
Given that data received from the Noona tool are personalized, they need to be
pseudonymized before storage in the BOUNCE central data repository. Information about the
patient and the link between the pseudonyms and the patient stays in the hospital.

How is the user going to achieve his/her goals?

Running the tool for the first time

1. The hospital administrator receives example data from the Noona tool in a JSON or XML
structure. The example data will have the exact structure that will use Noona for the
subsequent data batches.

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 14 of 70

© BOUNCE Public

2. The hospital administrator identifies the data fields that should be anonymized and the
anonymization algorithm to be used. The appropriate configuration parameters of the
tool are saved for future usage.

3. The Data anonymization tool is executed and the example dataset is properly
anonymized

4. The result file is examined by the hospital administrator to ensure that proper
anonymization has been achieved.

Running the tool after the first time

1. The hospital administrator receives the data from the Noona tool in a JSON or XML
structure.

2. The hospital administrator executes the Data Anonymization tool based on the
configuration identified when running for the first time.

3. The administrator reviews the generated anonymized data to ensure that they are
properly anonymized.

4. The data are uploaded to the BOUNCE central data repository

Additional functionalities or interactions: N/A

3.2.1.3. Data cleaning user scenario

Who is the end-user of the Data Cleaning tool? The BOUNCE Administrator

What does the user want to accomplish with the Data Cleaning tool?
Data Cleaning is the process that aspires to safeguard that the (internal and external) datasets
coming from the discrete and distributed data information sources are (to the extent possible)
clean and complete. It aims at providing the processes that will detect and correct (or remove)
inaccurate or corrupted datasets containing incomplete, incorrect, inaccurate or irrelevant
data elements with the purpose of replacing, modifying or deleting these data elements, also
known as “dirty” data. Data cleaning as a process within the context of BOUNCE needs to take
place prior to the check-in of the data in the BOUNCE data lake, since data need to be clean
prior to the analysis. Towards this end, in order to safeguard data quality, proper curation and
provenance, responsible for data cleaning is the BOUNCE administrator.

How is the user going to achieve his/her goals?
Common steps:

1. Manually uploading datasets that s/he would like to clean
2. Defining and editing the structure of the datasets uploaded from different data

providers.
3. Defining specific validation rules (e.g. data type, value range, etc.) per different variable

and per different provider, thus being able to define different cleaning rules for
different data providers

4. Defining corrective cleaning actions per constraint violation, per variable, and per data
source / provider.

5. Defining corrective missing data handling actions per variable, and per data source /
provider.

The BOUNCE administrator should also be able to have a quick visual reference (through
proper logs and visualisations) of the cleaning actions that have been performed.

Additional functionalities or interactions: N/A

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 15 of 70

© BOUNCE Public

3.3. High Level architecture

BOUNCE aims to build an open architecture to maximise the benefits of combining technologies
and data from different partners and organisation. The architecture will be constructed based
on an iterative incremental process of software development. Short iterations will help keep
quality under control by driving to a releasable state frequently, which will prevent the project
from collecting a large backlog of defect correction work. Refinements of the architecture will
take place during the whole lifetime of the project driven by the iterative feedbacks from all
stakeholders. The general BOUNCE architecture is envisioned as a framework, which integrates
several building blocks oriented to support/predict the resilience of women with breast cancer.
The building blocks are organized in three tiers:

i. the semantic tier based on hybrid architecture which contains data extraction,
transformation and serving the applications tier,

ii. the applications tier which contains the technology components such as biological and
medical modelling, rule based decision support system and psycho-emotional models

iii. the security tier, a privacy framework able to handle user privacy and data security
The high-level architecture of BOUNCE is shown in Figure 4, while in the following sub-sections
we describe the three tiers.

Figure 4: BOUNCE high-level architecture.

3.3.1. Semantic tier

The semantic tier of BOUNCE will provide a unified, homogenised view over the underlying data
sources. A detailed view of the Semantic tier is shown in Figure 5 and consists of the following
components: the data lake, the data cleaning tools, the cleaned databases, the semantic
integration tool and the APIs. Below we will describe each one of those components in detail.

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 16 of 70

© BOUNCE Public

Figure 5: Initial Semantic Tier Architecture of BOUNCE

 Data Lake: At the bottom layer, all inserted data will be staged in a repository with multiple
databases forming a data lake. Data will include the anonymized retrospective and
prospective data provided by HUS, IEO, HUJ and CHAMP and imported data from external
registries. The data will reside in the data lake in their original formatting to be further
cleaned and processed. The data residing in the data lake will then be cleaned using
appropriate data cleaning tools. Cleaning will entail missing value handling, identification of
erroneous records etc. The cleaned data, will again be staged in the data lake.

 Semantic Integration & Mapping: Using the semantic model, i.e. the BOUNCE ontology that
will be constructed within the BOUNCE project (WP3), all available data will be modelled,
mapped and semantically uplifted to triples. There will be available the possibility to perform
ETL, exporting selected data to an RDF triple store, or of the real time integration through a
virtual data source.

 Data Access APIs: All data, both integrated and those residing at the data lake will be
accessible through various APIs that will respect all necessary security and confidentiality
requirements established by the security layer of the BOUNCE project.

3.3.2. Applications (models) Tier

Broadly speaking, statistical and artificial intelligence/machine learning modelling are the two
distinct modelling approaches that have been recruited and serve as the basis for the modelling
work of BOUNCE. These techniques are being used for the identification of potential correlations
extracted from retrospective BOUNCE data (among various biomedical, psychological, functional
and quality of life aspects and parameters) but are also to be used for the modelling needs of
the prospective BOUNCE pilot study.
 Obviously, combinations of the previous main approaches will also be used for particular
problems reported in detail in deliverable D4.1 (served by the model fusion service of BOUNCE).

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 17 of 70

© BOUNCE Public

More precisely, the ultimate goal of the Application Tier is the development of an overall
prediction model and a resilience trajectory predictive model that will serve as the core of a
decision support system for predicting the resilience evolution in women with breast cancer
throughout the cancer continuum. To this end, preliminary correlations between heterogeneous
information sets related to resilience will be extracted and hypotheses to be used as input to the
model will be defined. Psychological, clinical (including treatment information), socio-
demographic and lifestyle data will be considered. Concrete hypotheses will be formulated
based on the correlations to be extracted. Both retrospective data from the BOUNCE clinical
partners and literature information will be exploited. Finally, mechanistic multiscale modelling
will be used primarily for the development of the health literacy - educational tool i.e. the
“Educational Oncosimulator” designed to raise awareness about the utmost importance of the
patient’s sticking to the medical treatment schemes and schedules prescribed by the clinician
whenever this takes place.

Prediction models
Two models are proposed (i) an overall/general, and (ii) a resilience-trajectory specific.
The Overall Prediction Model: Based on the hypothesis that previous medical and psychological
factors may determine or at least predict subsequent well-being and health outcomes, this
overall model includes the following hypothesized significant relationships:

1. Outcomes may be predicted by

 the variables (or their interactions) assessed at the immediately previous time-
point

 the factors (or their interactions) assessed at all previous time-points and baseline

 the interactions between variables assessed at different time-points
2. Potential interplay between the medical and psychological variables of the study.

 For example, it is possible for a medical event or changes in a significant
biomedical index to lead to subsequent changes in illness self-regulation and
psychological outcomes.

 Likewise, it is possible and, therefore, will be examined whether there is an
interaction between psychological variables, such as illness representations or
self-efficacy, and crucial medical variables, such as therapy side-effects, regarding
their impact on health outcomes.

3. The process of adaptation to illness is probably characterized by a choreography of
dynamic changes in the several aspects of this process. In other words, it is possible that
changes in the basic self-regulatory spiral (illness representations, coping behaviors,
reappraisals etc.) are associated with corresponding changes to the ways that facilitating
factors (such as, self-efficacy) change over time, and for both of these patterns of change
to be associated with variations in health outcomes. Hence, the examination of the
potential impact of the dynamic changes in different variables (or a set of the most
important of them) on corresponding changes in health outcome scores is needed. Some
paradigmatic pathways are illustrated below:

 Medical events – (changes in) self-efficacy – (changes in) adherence to
medical advice – (changes in) health outcomes

 Medical events – (changes in) optimism – (changes in) coping behavior (e.g.,
positive attitude) – (changes in) health outcomes

 Illness emotional representations – emotion regulation – social support –
health outcomes

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 18 of 70

© BOUNCE Public

 Illness representation of treatment control – fear of recurrence – distress –
health outcomes

 Sense of coherence – self-rated health – coping behavior – health outcomes

The Resilience Trajectory Prediction Model is supplementary to the previous main one and aims
to identify:

a) the (different types of) trajectory over time (i.e., months 1 to 18) for the main outcomes
(or the composite outcome indexes) in order to detect the time-point(s) that is (are)
critical for inclusion in (or exclusion from) a specific type of trajectory (specifically, the
resilience trajectory);

b) the possible transitions from one specific type of trajectory to another;
c) the critical factors that precede inclusion in a specific type of trajectory (e.g., changes in

important variables; significant events).
3.3.2.1. Statistical Procedures and Data Mining Approaches

Temporal data mining, time-series prediction, sequence classification methods, clustering time-
series data, and temporal association rules will be used to develop and validate the predictive
model. Mediation, moderation and moderated mediation analyses will have a central role in the
statistical methodology. In addition, any other methodology appropriate for time series
prediction including autoregressive models, chaotic time series, Markov chains and deep
learning will be considered for the optimal prediction of resilience in Βounce.
Because the performance of predictive models can be considerably deteriorated when non-
relevant features (i.e. variables) are included during the training phase of the model, feature
selection will take place prior to model building. Different feature selection techniques or
combinations of them will be applied, namely filter methods, wrapper methods and embedded
methods. Filter type methods that will be considered in the present study also include well-
known statistical tests and procedures such as Student's t-test, Analysis of variance (ANOVA),
Mann–Whitney U test, Kruskal-Wallis test, correlation, regression analyses etc. Given the
temporal/sequential nature of data, BOUNCE will also make use of methodologies specific for
time series analysis (e.g. repeated measures, autocorrelation analysis etc).
The methodological approach is described below:

 Univariate (e.g. t-test, chi-squared test, Mann–Whitney U test, Spearman's rank
correlation coefficient etc.) and multivariate techniques (e.g. logistic regression,
correlation-based feature selection, sequential forward selection, sequential backward
elimination, decision trees, naive Bayes etc.) will be performed to identify features of
importance.

 Intelligent pattern recognition analysis of an individual’s context will be applied to allow
the identification of established behaviors and eventually, cause and effect relationships.

 Given the sequential nature of recorded data, association analysis techniques, able to
handle both co-occurrence and dynamic relationships in multivariate time series data,
will be utilized.

 Temporal data mining will enable the identification of dynamic patterns or predictive
rules in long-term trajectories and, eventually, will allow drawing conclusions regarding
the associations between the patient’s context - indicating resilience to BC - and the
clinical health outcomes, and vice versa.

 The identification of groups of patients with similar characteristics will be investigated
based upon classification and clustering analysis (e.g. random forests and supporting
vector machines, hierarchical clustering, k-means,).

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 19 of 70

© BOUNCE Public

3.3.2.2. Other data analyses approaches

Descriptive statistics (n, mean, standard deviation, median, maximum and minimum, graphical
representation) will be used to summarize the continuous data. Discrete measures will be
summarized using counts, percentages and graphical representations. Bivariate charts will also
be produced whenever desired. Descriptive statistics consist a standard preliminary step in data
analysis which allow for a meaningful presentation of data and can complement the
interpretation of the results of statistical analyses. Furthermore, they can help identify outliers,
imbalance data and guide subsequent choices. Variables will be checked for normality,
homoscedasticity etc. to guide the selection of most appropriate analysis technique. Variable
transformation may also take place (e.g. log transformation or transformation of continuous
variables into categorical based on recognized cut-off values) if needed/desired.

3.3.3. Security Tier & security by design

Security ensuring protection of personal / sensitive information in BOUNCE needs to be
addressed through a two-fold procedure, which includes: 1) Data Access Control, and 2) Security
of data across their whole lifecycle, from storage, to transit and to use. It should be noted
however that the holistic security approach is not a standalone component, but rather a set of
technologies and tools that are utilised within the components of the BOUNCE platform in order
to enable cross-platform security.

3.3.3.1. Access Control
Access control in general includes authorization, authentication, access approval, and audit.
Authentication and access control are often combined into a single operation, so that access is
approved based on successful authentication, or based on an access token. Authentication
methods and tokens include passwords, biometric scans, physical keys, electronic keys and
devices, and other means. Within the context of BOUNCE, the Noona system which will be used
for data collection at the pilot sites has already established the necessary data access control
policies and mechanisms, according to which patient identity information is stored and shared
with the research nurse and the treating doctor. Noona is hosted in the Amazon Web Services
(AWS) platform with all the users’ connections passing through the Web Application Firewall of
the AWS while the databases are hosted in Amazon Relational Database Service not within the
same server instance. Those data will be exported to the pilot sites, properly anonymized and
sent to the central BOUNCE data management infrastructure. Thus, within the context of
BOUNCE, access control needs to be realised only upon the central BOUNCE data management
infrastructure, through granting access to the data to the corresponding tools illustrated in the
forthcoming section.

3.3.3.2. Data Lifecycle Security
With regards to data security throughout the whole lifecycle of the data exploitation, BOUNCE
consortium has preliminarily examined and as appropriate will develop and deliver safeguards
regarding three main security aspects:

1) Security of data in storage
2) Security of data in transit, or data in motion
3) Security of “Data in Use”
4) Last but not least, security of technical interfaces (e.g. REST) amongst the various

BOUNCE components will also be considered and adopted, minimising the risk associated

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 20 of 70

© BOUNCE Public

with the exploitation of the operation of various BOUNCE components from external
malicious components.

Data-At-Rest/Data-In-Storage Security
Security of data in storage is the first of the three parts of the data lifecycle dealt with in the
context of the project and is used as a complement to the terms data in use and data in transit
which together define the three states of digital data. Data that falls under this category could
include files stored on local or cloud hard drive. Data in storage security refers to the
preservation of the security, privacy and integrity of data that is stored physically in any digital
form. It deals with any type of security around the storage architecture and the data stored on
it. BOUNCE will make use of checksum to ensure security and integrity control of the data in
storage. Checksum is a small-sized datum derived as the outcome of the cryptographic hash
function or checksum algorithm on a block of data or file. This outcome is utilised to identify
data corruption errors or modifications and overall data integrity since even small changes will
produce a different outcome. Several other solutions, like the use Symmetric Encryption
Algorithms, Asymmetric Encryption Algorithms and Attribute-Based Encryption, have been
primarily evaluated by the consortium in order to address the security, privacy and integrity of
the data stored in the BOUNCE Data Store, however given that the data will already be
transmitted and subsequently stored anonymised, these technologies do not seem to be ideal
for the data-processing intensive BOUNCE ecosystems due to efficiency problems (e.g.
significant latency) that they can introduce within the data analysis process.
Data-In-Transit Security Schemes
Data in transit, or data in motion, is data actively moving from one location to another such as
across the internet or through a private network. Data protection in transit is the protection of
this data while it’s traveling from network to network or being transferred from a local storage
device to a cloud storage device – wherever data is moving, effective data protection measures
for in transit data are critical as data is often considered less secure while in motion. Concerning
the security of data in transit or data in motion, BOUNCE will evaluate the provision of data
encryption via Secure Sockets Layer (SSL) and Transport Layer Security (TLS) at the RPC layer.
Data-In-Use
“Data in Use” is all data not in an at-rest state, which is kept only one particular node in a network
(for example, in resident memory, or swap, or processor cache or disk cache, etc. memory). This
data can be regarded as “secure” if and only if:

a) access to the memory is rigorously controlled (the process that accessed the data off of
the storage media and read the data into memory is the only process that has access to
the memory, and no other process can either access the data in memory, or man-in-the-
middle the data while it passes through I/O)

b) regardless of how the process terminates (either by successful completion, or killing of
the process, or shutdown of the computer), the data cannot be retrieved from any
location other than the original at rest state, requiring re-authorization.

Although the BOUNCE consortium has already identified a list of candidate technologies, such
as Homomorphic Encryption and Verifiable Computation, given that the data will already be
transmitted and subsequently stored anonymised, these technologies do not seem to be ideal
for the data-processing intensive BOUNCE ecosystem due to efficiency problems (e.g. significant
latency) that they can introduce within the data analysis process. The approach to be adopted is
currently under discussion.
Security of Technical Interfaces

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 21 of 70

© BOUNCE Public

The holistic security approach also covers the security aspects for the technical interfaces (e.g.
REST) provided by the platform. This includes the interfaces provided by the components of the
platform in regards to the authorisation, authentication and access approval mechanisms.
Through the preliminary analysis, the consortium decided to introduce a token-based
authentication with JSON Web Token (JWT)5. JWT is an open standard (RFC 7519) that defines a
compact and self-contained way for securely transmitting information between parties as a JSON
object.
The following table presents the holistic security approach of BOUNCE platform for the data
lifecycle security as described above.

Security
Aspect

Proposed Approach Adopted Approach Remarks

Access
Control

Several approaches
safeguarding access
control including DAC,
MAC, RAC, RBAC and more

Customised RBAC for
access control.

Policies will need to be
defined on different access
rights based upon the users’
roles.

Data in
Storage

Checksums for data
integrity, Symmetric
Encryption Algorithms,
Asymmetric Encryption
algorithms and Attribute-
Based Encryption

Usage of checksums
for data integrity.

Encryption Algorithms seem
to not be ideal for the data-
processing intensive
BOUNCE ecosystem
because of performance
and efficiency issues that
they may introduce.

Data in
Transit

Secure Sockets Layer (SSL)
and Transport Layer
Security (TLS)

Provision of SSL and
TLS data encryption
and authentication
at the RPC layer.

SSL and TLS encryption are
the de-facto standard in the
security of data in transit.

Data in
Use

Homomorphic Encryption,
Verifiable Computation

Currently none of
the technologies has
been adopted

Encryption Algorithms seem
to not be ideal for the data-
processing intensive
BOUNCE ecosystem
because of performance
and efficiency issues that
they may introduce.

Technical
Interfaces

Token-based
authentication and
authorisation mechanism
with JSON Web Token

JSON Web Token will
be introduced.

The implementation and
integration of JSON Web
Token mechanism is an
ongoing activity.

Table 3. Holistic Security Approach summary

5 JSON Web Tokens, https://jwt.io

https://jwt.io/

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 22 of 70

© BOUNCE Public

4. BOUNCE components, interfaces and diagrams

4.1. Procedures

4.1.1. Components and interfaces reporting

In order to standardize documenting of the development process of the BOUNCE tools, two
templates has been created for the description of the components and their programming
interfaces:

 A template for description of the tools (Appendix A – Template for component
description), which should contain mainly an information about provided and expected
interfaces for each application as well as third party frameworks used for implementation
(incl. their licences for usage).

 A template for detailed specifications of the provided REST interfaces (Appendix B –
Template for REST service specification).

4.1.2. Sequence reporting

Behaviour and interaction of the BOUNCE components in time sequence is presented as a set of
sequence diagrams, which show how processes operate with one another and in what order.
Sequence diagrams are typically associated with use case realizations in the logical view of the
system under development. For identifying the use cases for BOUNCE platform, the scenarios
described in the deliverable D1.2 were analysed. The sequence diagrams depict the objects
involved in the scenario and the sequence of messages exchanged between the objects needed
to carry out the functionality of the scenarios. Sequence diagrams show, as parallel vertical lines
(lifelines), different processes or objects that live simultaneously, and, as horizontal arrows, the
messages exchanged between them, in the order in which they occur. This allows the
specification of simple runtime scenarios in a graphical manner6.

4.1.3. Deployment reporting

The physical deployment of BOUNCE components and details about required hardware and
software are presented in deployment diagrams. A typical deployment diagram7 shows what
hardware components ("nodes") exist (e.g., a web server, an application server, and a database
server), what software components ("artifacts") run on each node (e.g., web application,
database), and how the different pieces are connected (e.g. JDBC, REST, RMI). The nodes appear
as boxes, and the artefacts allocated to each node appear as rectangles within the boxes. Nodes
may have sub-nodes, which appear as nested boxes. A single node in a deployment diagram may
conceptually represent multiple physical nodes, such as a cluster of database servers.

Below we report the descriptions of all components based on the template (Appendix A –
Template for component description), sequence interfaces and deployment interfaces (including
UML component diagrams). Furthermore, the mature components and the under development
components will report the detailed rest interfaces (Appendix B – Template for REST service

6 https://en.wikipedia.org/wiki/Sequence_diagram
7 https://en.wikipedia.org/wiki/Deployment_diagram

https://en.wikipedia.org/wiki/Sequence_diagram
https://en.wikipedia.org/wiki/Deployment_diagram

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 23 of 70

© BOUNCE Public

specification). Since the implementation of some components (e.g. decision support system) has
not started yet, we cannot provide details about their REST APIs. Nevertheless, the Appendix B
– Template for REST service specification will be used during the development of all the
components ensuring a smooth final integration. For that reason, we consider the deliverable
D5.1 of BOUNCE a live document that will be updated during the software lifecycle.

4.2. Personal Health System

The Personal Health System Noona is a platform already established in Finland and currently
expanding to other countries as well. Within BOUNCE the platform will be made available for
the collection of the data in the pilots.

4.2.1. Component and interfaces

Name Noona

Related use cases All

Due Date Implemented.

Location source code Confidential.

Responsibilities/
Functionality

Noona is responsible for collecting the questionnaire data and
enabling the clinic to be able to export the data. The main goal
is to provide the psychological scales and other relevant eCRF
forms to be filled in by the patients.

Provided
Interfaces
[Interfaces implemented
by the component]

Interface Type Description

Patient UI GUI Patient can track their
questionnaires

Clinic UI GUI Clinic can request a data export

Required
Interfaces
[Interfaces used by the
component]

Interface Type Description

Data
Anonymizer
API

REST REST API to (semi-)automatically
anonimyze and push data to the
BOUNCE data lake/semantic tier

Implementation Java, Kotlin, Angular, Typescript

Third party Libraries

BACKEND

Library License

Apache Avro Apache-2.0

Jersey CDDL Version 1.1

JAX-RS API CDDL Version 1.1

libphonenumber Apache-2.0

java-apns BSD-3-Clause

Jackson JSON Processor Apache-2.0

Jackson Databind Apache-2.0

Joda Time Apache-2.0

Eclipse Link
Eclipse Public License - v 1.0,
Eclipse Distribution License - v 1.0

PostgreSQL JDBC driver BSD-3-Clause

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 24 of 70

© BOUNCE Public

Apache Commons Beanutils Apache-2.0

jsonrpc4java MIT

jade4j MIT

Apache PDFBox Apache-2.0

Apache Commons FileUpload Apache-2.0

Metadata Extractor Apache-2.0

Amazon AWS Java SDK KMS Apache-2.0

GeoIP2 Java API Apache-2.0

FRONTEND

Library License

Angular: common, compiler, core, forms, http, platform-
browser, platform-browser-dynamic, router, upgrade MIT

AngularJS MIT

AngularJS Animate MIT

AngularJS Cookies MIT

AngularJS JSON-RPC WTFPL

AngularJS Moment MIT

AngularJS Route MIT

AngularJS Sanitze MIT

AngularJS Scroll MIT

Angular Tooltips MIT

AngularJS Touch MIT

AngularJS UI-router MIT

Angular-toastr MIT

Bootstrap MIT

Bootstrap datepicker Apache-2.0

core-js MIT

D3 BSD-3-Clause

JQuery MIT

JQuery transform MIT

Moment MIT

Moment timezone MIT

ng-showdown BSD-3-Clause

@ngrx/core MIT

@ngrx/store MIT

@ngrx/store-devtools MIT

Photoswipe MIT

RxJS Apache-2.0

Showdown BSD-3-Clause

stacktrace-js The Unlicense

loadsh MIT

Zone.js MIT

cookie-storage MIT

fastclick MIT

tinygradient MIT

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 25 of 70

© BOUNCE Public

ngrx-store-logger MIT

url-join MIT

Cordova:cordova-plugin-camera,cordova-android,cordova-
ios, cordova-plugin-device, cordova-plugin-file, cordova-
plugin-media, cordova-plugin-media-capture, cordova-
plugin-network-information, cordova-plugin-splashscreen,
cordova-plugin-statusbar, cordova-plugin-vibration,
cordova-plugin-whitelist Apache-2.0

Cordova-hot-code-push MIT

Cordova ActionSheet MIT

Cordova AppVersion plugin MIT

Cordova Badge Plugin Apache-2.0

Cordova Browser-Sync Plugin Apache-2.0

Cordova DatePicker MIT

Cordova Firebase MIT

Cordova-plugin-ios-disableshaketoedit MIT

Cordova Screen Orientation Plugin Apache-2.0

Cordova SecureStorage MIT

Cordova SSL Certificate Checker MIt

Cordova ES6-Promise MIT

4.2.2. Sequence diagram

Noona provides different user interfaces for different roles. Figure 6 provides the sequence
diagram of the patient, while Figure 7 provides the sequence diagram of the healthcare
professional.

Figure 6: Sequence diagram of Noona patient User interface

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 26 of 70

© BOUNCE Public

Figure 7: Sequence diagram of Noona healthcare professionals User interface

4.2.3. Deployment diagram

Figure 8: Deployment diagram of Noona

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 27 of 70

© BOUNCE Public

4.3. Authentication, authorization and role management

4.3.1. Component and interfaces

The Access Controller is the component responsible for controlling the access to the different
resources of the platform, like the platform’s datasets, added value services and internal
components offered through the platform such as the decision support. The Access Controller
functionality follows the main principles defined by the Attribute-Based-Access-Control8 (ABAC)
paradigm, which is a logical access control model, where access to objects is controlled by
evaluating rules (policies) against the attributes of the entities (subject and object) actions and
the environment relevant to a request.
More specifically, the Access Controller has two main functionalities:

 It controls the access to the platform’s datasets, added value services and internal
components.

 It manages the process of requesting and granting access to the platform’s
aforementioned resources.

The implementation of the Access Controller which follows the ABAC paradigm comprises of
three main modules:

 The Policy Enforcement Point (PEP), which acts as the endpoint that receives the access
requests to the different resources.

 The Policy Information Point (PIP), which retrieves the required attributes of the
resources and the active policies.

 The Policy Decision Point (PDP), which evaluates the access requests based on the
resources’ attributes and the policies and produces a decision to grant or deny access.

4.3.2. Sequence diagram

The execution flow of examining the access rights to a resource is described as follows:

 The Policy Enforcement Point receives a request for accessing a resource.

 The type of the request is examined and the suitable function of the Policy Decision Point
is called to resolve the request.

 The Policy Decision Point examines which resources are being requested and by whom
and calls the Policy Information Point to get the required attributes and the policies for
this kind of resource.

 The Policy Information Point gathers all the information from the platform’s storage and
the stored policies.

 The Policy Decision Point evaluates the policies one-by-one, according to the received
attributes. If a policy evaluation is successful the access is granted, otherwise, if none of
the policy evaluations is successful, then the access is denied.

 The Policy Enforcement Point receives the decision and grant or deny access accordingly.

8 https://en.wikipedia.org/wiki/Attribute-based_access_control

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 28 of 70

© BOUNCE Public

Figure 9: Access Controller sequence diagram

Figure 9 displays the execution flow for the functionality of the Access Controller.

4.3.3. Deployment diagram

As aforementioned, the BOUNCE Access Controller follows the ABAC paradigm and comprises of
three main modules:

 The Policy Enforcement Point (PEP). The PEP receives the requests for accessing the
different resources and also receives the decision to grant or to deny access to these
resources accordingly.

 The Policy Information Point (PIP). The PIP retrieves all the required attributes of the
resources and the active policies according to the request made to the PEP and provides
it to the Policy Decision Point.

 The Policy Decision Point (PDP). The PDP holds the business intelligence of the Access
Controller and is responsible for receiving all the required attributes of the resources and

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 29 of 70

© BOUNCE Public

the active policies according to the request made to the PEP, from the PIP, and to
evaluate the access requests based on the resources’ attributes and the policies in order
to make the decision to grant or deny access and forward it to the PEP.

Figure 10: Access Controller deployment diagram

4.4. Data Anonymizer

The data anonymizer will anonymize the data collected from Noona before pushing them into
the data layer/lake.

4.4.1. Component and interfaces

Name Data Anonymizer

Related use cases User Scenarios: 1, 2, 3, 4, 5, 6

Due Date Month 24

Location source
code

Currently under development, FORTH’s internal repository

Responsibilities/
Functionality

The data anonymizer will anonymize the data collected from Noona
before pushing them into the data layer/lake.

Provided
Interfaces
[Interfaces
implemented by
the component]

Interface Type Description

Login Interface GUI User is required to login to the system using
their credentials

Data go
through

anonymization
process

PROCESS A process will provide anonymization of the
patients’ data.

Required
Interfaces
[Interfaces used by
the component]

Interface Type Description

Authentication
API

REST An API for ensuring user authorization to
use Temporary Research Supporting Tool

Noona
Repository API

REST API for patient’s data management

Implementation Java Web Application

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 30 of 70

© BOUNCE Public

Third party
frameworks

• Spring Framework (Apache 2.0 license).
• Hibernate (GNU Lesser General Public License).

4.4.2. Sequence diagram

Figure 11: Data Anonymizer Sequence Diagram

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 31 of 70

© BOUNCE Public

4.4.3. Deployment diagram

Figure 12: Data Anonymizer Deployment Diagram

4.5. Data Aggregator & Harmonizer

4.5.1. Component and interfaces

Name Data Aggregator & Harmonizer

Related use cases All

Due Date First Prototype M24, Final Version M36,

Location source
code

FORTH’s internal repository

Responsibilities/
Functionality

This component will be responsible for providing access to the available,
semantically uplifted data of the BOUNCE project. The input of this
component will be the BOUNCE ontology (D3.2 and D3.3), the available
data sources and the corresponding mappings of the sources’ schemata
to the ontology. Then it will provide a SPARQL endpoint for querying the
integrated data.
Available choices of this component is whether the integrated data
should form a materialized or a virtual database with the integrated
data.

Provided
Interfaces
[Interfaces
implemented by the
component]

Interface Type Description
SPARQL
endpoint

REST API An interface for accepting a SPARQL
endpoint and answering it over the
available integrated and harmonized data.

Required Interface Type Description

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 32 of 70

© BOUNCE Public

Interfaces
[Interfaces used by
the component]

Data source
APIs

REST API or
java code API

An interface should be available by the
underlying databases in order to be able to
query them.

Implementation This component will be developed using JAVA.
Third party
frameworks

In addition, it will relly on D2RQ9 and OntoQ10 ontology-based data
access frameworks. Both the tools are using the Apache License V2.0

As the implementation of this component matures, more details will be described in this
deliverable about the exact API calls and the services provided.

4.5.2. Sequence diagram

The sequence diagram of eventually using the data aggregator and harmonizer is shown in Figure
13. In essence, Data Aggregator & Harmonizer accepts queries from the application tier and
answers them. To answer them it either produces the required subqueries, forwards them to
the underlying data sources to be answered and formulates the final results (on-line integration)
or has already materialized the necessary data (off-line integration/ETL) and returns the answers
based on the transformed, existing data.

Figure 13: Data Aggregator & Harmonizer sequence diagram

4.5.3. Deployment diagram

The deployment diagram of the data aggregator and harmonizer is shown in Figure 14. Ideally,
the Data Aggregator and Harmonizes should be placed in the same server with the data lake to
minimize network transfer time. Then applications can be placed in another server. The
applications that require access to the integrated data can query the data aggregator and
harmonized, whereas the applications that require access only to a limited amount of non-
integrated data can directly access them through the data lake.

9 http://d2rq.org/
10 http://ontop.inf.unibz.it/

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 33 of 70

© BOUNCE Public

Figure 14: Data Aggregator & Harmonizer deployment diagram

4.6. Data Cleanser

4.6.1. Component and interfaces

The scope of the BOUNCE Data Cleaner is to deliver a software able to provide the assurance
that the BOUNCE datasets coming from the discrete and distributed data information sources
will be clean and complete, to the extent possible. The BOUNCE Data Cleaner is aiming at
providing the processes that will detect and correct (or remove) inaccurate or corrupted
datasets containing incomplete, incorrect, inaccurate or irrelevant data elements with the
purpose of replacing, modifying or deleting these data elements, also known as “dirty” data.
The BOUNCE Data Cleaner will implement the data cleaning workflow providing all the necessary
actions towards safeguarding the storage and delivery of consistent datasets across the BOUNCE
platform. The data cleaning workflow comprises of the following steps as illustrated also in
Figure 15:

1. Validate Data: Data validation ensures that a program operates on clean, correct and
useful data. Errors are reported for data elements that do not comply with the specified
rules.

2. De-Cleanse Data: Data de-cleansing ensures that the data elements for which validation
errors are raised (according to pre-defined rules and conditions) are properly corrected
or removed.

3. Check Data Completeness: The data completeness checks ensure the existence of the
required/mandatory data elements on the dataset. It is mainly associated with handling
missing values and filling in values according to pre-defined rules.

4. Verify Data: Data verification ensures that the data elements of a dataset are checked
for accuracy and inconsistencies after steps like validation, de-cleansing and data
completeness are done.

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 34 of 70

© BOUNCE Public

5. Consolidate & Store Errors’ logs: Error logging provides history records of the errors
identified and the executed corrective actions.

Figure 15. Data Cleaning workflow

The BOUNCE Data Cleaner also exposes a user interface to the administrator who will be able to
perform a number of activities, as described in the table below
In terms of the scenario, the BOUNCE administrator is responsible for:

1. Manually uploading datasets that s/he would like to clean
2. Defining and editing the structure of the datasets uploaded from different data

providers.
3. Defining specific validation rules (e.g. data type, value range, etc.) per different variable

and per different provider, thus being able to define different cleaning rules for different
data providers

4. Defining corrective cleaning actions per constraint violation, per variable, and per data
source / provider.

5. Defining corrective missing data handling actions per variable, and per data source /
provider.

The BOUNCE administrator should also be able to have a quick visual reference (through proper
logs and visualisations) of the cleaning actions that have been performed.

Name BOUNCE Data Cleaner

Related use cases N/A

Due Date First version M18, Final version M24

Location source
code

Not available yet

Responsibilities/
Functionality

Safeguards that the (internal and external) datasets coming from the
discrete and distributed data information sources are (to the extent
possible) clean and complete. It provides the processes that will detect
and correct (or remove) inaccurate or corrupted datasets containing
incomplete, incorrect, inaccurate or irrelevant data elements with the
purpose of replacing, modifying or deleting these data elements, also
known as “dirty” data.

Provided
Interfaces
[Interfaces
implemented by
the component]

Interface Type Description

Initial Interface GUI Greet user and prompt them to go to login
screen to enter their credentials

Login Interface GUI User is required to login to the system using
their credentials

Upload
Dataset

GUI User is prompted to upload dataset (and
define the provider)

Edit Data
Structure

GUI User is prompted to define and edit the
structure of the datasets uploaded from
different data providers.

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 35 of 70

© BOUNCE Public

Define
Validation
Rules

GUI User is prompted to define specific
validation rules (e.g. data type, value range,
etc.) per different variable and per different
provider

Define
Cleaning Rules

GUI User is prompted to define corrective
cleaning actions per constraint violation, per
variable, and per data source / provider

Define Missing
Values
Handling Rules

GUI User is prompted to define corrective
missing data handling actions per variable,
and per data source / provider

Dashboard GUI User can have a quick visual reference
(through proper logs and visualisations) of
the cleaning actions that have been
performed

Required
Interfaces
[Interfaces used by
the component]

Interface Type Description

Authentication
API

REST An API for ensuring user authorization to use
the system

Data
repository API

REST API for data management (retrieve data)

Implementation N/A

Third party
frameworks

N/A

4.6.2. Sequence diagram

Figure 16 illustrates the data cleaning workflow along with the procedures and processes
supported by the BOUNCE Data Cleaner. Every step of the sequence flow is elaborated in the
forthcoming paragraphs.

Figure 16: Data Cleaner Component Sequence Diagram

As depicted in Figure 16, the BOUNCE Cleaner is exposing one interface to the rest of the
components of the BOUNCE platform, the Data Cleaner interface (IDataCleaner). Through this

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 36 of 70

© BOUNCE Public

interface, the data cleaning workflow can be initiated by pulling / pushing the incoming
information data retrieved / received from / to the BOUNCE Data Cleaner. Once the BOUNCE
Data Cleaner receives the incoming data, it will initiate the first step of the workflow which is
the data validation step. Through the IValidator internal interface, the Data Validator service is
invoked to perform the error detection due to lack of conformance to the specified set of
constraints and in response the list of errors is returned.
Following the data validation step, the Data De-Cleanser service is invoked via the IDeCleanser
internal interface. The Data De-Cleanser service is receiving the incoming data along with the list
of errors identified by the Data Validator service. The Data De-Cleanser service performs the
necessary actions to correct or remove the data elements of the incoming data marked with
errors. As a result, the updated incoming data is returned along with the list of actions performed
on each data element.
In the next step, the Data Completer service is invoked by the ICompleter internal interface. The
Data Completer service performs automated filling of missing values according to pre-defined
rules and conditions, and returns the updated data and the list of actions performed on the
corresponding data elements.
Upon performing the data completion step, the Data Verifier service is triggered via the IVerfiier
internal interface. The Data Verifier service ensures that the updated data is now error free,
accurate and consistent as required by the BOUNCE platform. The results of the verification are
returned in response to the verification request.
Finally, once all previous steps have been executed towards the completion of the data cleaning
workflow, the Errors’ Logger Service is triggered via the ILogger internal interface. The Errors’
Logger service stores the information in records. These records will give the BOUNCE moderator
(should such a role eventually be supported) the opportunity to see exactly which errors were
identified by the BOUNCE Data Cleanser, and what were the corrective / cleansing actions
performed by the rest of the internal services on the incoming data. Once the record for the
incoming data is returned, the BOUNCE Data Cleaner returns the updated (cleaned) information
data to the BOUNCE repository as a response to the invocation of the IDataCleaner interface.

4.6.3. Deployment diagram

The BOUNCE Data Cleaner comprises of several internal sub-components, each one providing an
interface to support the interconnection and collaboration with the rest of the internal sub-
components or other internal components of the BOUNCE platform. Figure 17 illustrates the
internal architecture of the Data Cleaner component, displaying all internal sub-components
along with their interfaces.

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 37 of 70

© BOUNCE Public

Figure 17: Data Cleaner Component design

As depicted in the internal architecture diagram, the BOUNCE Data Cleaner Service comprises of
the following main services:

1. Data Validator Service
2. Data De-Cleanser Service
3. Data Completer Service
4. Data Verifier Service
5. Errors’ Logger Service

The Data Validator will perform data validation of the incoming information data with the
purpose of identifying errors associated with the conformance to specific set of constraints. This
service acts as a safeguard that the data measures compare to defined business rules or
constraints set.
The Data De-Cleanser service will perform the de-cleansing step of the data cleaning workflow.
In particular, this service performs the necessary corrections or removals of errors identified by
the Data Validator Service, and depending on the nature of the error, automated cleansing of
the information will be performed based on a predefined set of rules, or a moderator (should
such a role eventually be supported) is notified to take further actions.
The Data Completer service will safeguard the appropriateness and completeness of the
incoming information data. This service safeguards conformance to mandatory fields and
required attributes of the dataset based again on a predefined set of rules or the desired
configuration. On these rules and configuration parameters the actions taken by the service are
determined for either automated filling of the missing values by interpolation or extrapolation
techniques or notification of a moderator (should such a role eventually be supported) to take
the necessary actions.
The Data Verifier service will ensure that all data will accurately be corrected or completed and
the dataset will eventually be error free.

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 38 of 70

© BOUNCE Public

The Errors’ Logger Service will undertake the responsibility of keeping in records the reported
error logs from the rest of the services and the actions taken towards the data cleaning of the
incoming information data. Due to the fuzzy nature of the data cleansing workflow it is
mandatory that all error events thrown or actions performed during the processing of the
incoming information data are held in records. The BOUNCE moderator (should such a user role
eventually be supported) should be able to check over the log entries created, the results of the
data cleansing workflow along with detailed information on the error or the action that
occurred.

4.7. Temporary Research Supporting Tool

4.7.1. Component and interfaces

Name Temporary Research Supporting Tool

Related use cases User scenarios: 1, 2, 3, 4, 5, 7

Due Date First version M18, Final version M24

Location source
code

Not available yet

Responsibilities/
Functionality

Temporary Research Supporting Tool is the short-term internal project
tool to facilitate data exploration and visualization of data and scales.
The tool should be able to retrieve and visualize anonymized patient
data, data about the individual scores on each scale and the combination
of scores in different biomedical and psychosocial variables (coming
from the current and/or possible previous assessments).

Provided
Interfaces
[Interfaces
implemented by
the component]

Interface Type Description

Initial
Interface

GUI Greet user and prompt them to go to login
screen to enter their credentials

Login Interface GUI User is required to login to the system using
their credentials

Entering Data GUI A user interface used by the expert for
selecting data.

Visualization
of Results

GUI A user interface will provide an overview of
the analysis’ results.

Required
Interfaces
[Interfaces used
by the
component]

Interface Type Description

Authentication
API

REST An API for ensuring user authorization to use
the system

Data
repository API

REST API for data management (retrieve data)

Implementation JavaScript, Java Web Application

Third party
frameworks

• Spring Framework (Apache 2.0 license).
• Hibernate (GNU Lesser General Public License).

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 39 of 70

© BOUNCE Public

As the implementation of this component matures, more details will be described in this
deliverable about the exact API calls and the services provided.

4.7.2. Sequence diagram

Figure 18: Temporary Research Tool Sequence Diagram

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 40 of 70

© BOUNCE Public

4.7.3. Deployment diagram

Figure 19: Temporary Research Tool Sequence Diagram

4.8. Model Repository

4.8.1. Component and interfaces

Τhe web based BOUNCE Model Repository (MR) will store the overall prediction model and the
resilience trajectory prediction model.
The key entities of the MR are the model, the parameters, the properties and the files (see Figure
20). The model entity includes all the descriptive information of a model, the parameters entity
contains all the information regarding the input parameters needed for the execution of the
model (data type, units, description etc.) as well as the output data of a model (description, type
etc.), the property entity contains the properties that could characterize a model (e.g. statistical
and machine learning techniques that were used) and the file entity contains the files linked to
the model (e.g. several versions of binaries).

Figure 20: Key entities composing MR

The basic principles of the MR are:

 Each model has basic descriptive information. This information uniquely defines the
model and differentiates it from other models.

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 41 of 70

© BOUNCE Public

 Each model can have one or more properties that further describes or/and classifies it.

 Each model is associated with a set of parameters.

 Each model may be associated with a set of references, which provide direct or indirect
links to additional material, extending in this way the knowledge base related to the
specific model.

 Every model can be accompanied by a set of files. The corresponding DB table only holds
the descriptive information of the file and not the actual file data, which is stored in a
designated set of folders within the file system.

Name Model Repository (MR)

Related use cases User scenarios 1-6

Due Date prototype: M21, first version: M24, second version: M32 first
implementation: M38

Location source
code

N/A

Responsibilities/
Functionality

This is the web-based component that will permanently host the models
that will be developed in the context of the BOUNCE project.

Provided
Interfaces
[Interfaces
implemented by
the component]

Interface Type Description

Initial
Interface

GUI
Greet user and prompt them to go to login
screen to enter their credentials

Login
Interface

GUI
User is required to login to the system using
their credentials

Incorrect Login
Interface

GUI
User is notified that their login attempt was
unsuccessful and prompted to retry

Main
Interface

GUI
User is presented with the necessary choices
for CRUD procedures on the model
components

Creation
Interface

GUI

For each model component (files,
parameters, etc.) and/or administrative data
(users, roles, etc.) the user is required to
complete a list of fields in a corresponding
screen and submit the form.

Content List
Interface

GUI

User is presented with a set of screens
containing the MR contents. By clicking on
specific buttons in each row the user can edit
(and update) or delete the row.

Edit
Interface

GUI

For each model component (files,
parameters, etc.) and/or administrative data
(users, roles, etc.) the user is required to
correct a list of fields in a corresponding
screen and submit the form.

 Authentication
API

REST
An API for ensuring user authorization to use
MR

DB API REST

API for data management of MR content
(data CRUD functions, file download)

Required Interface Type Description

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 42 of 70

© BOUNCE Public

Interfaces

Implementation Python, MySQL, Javascript, HTML, CSS

Third party
frameworks

Django, jQuery

A web-based user interface is being developed in order to allow users to interact with the
repository. MR makes use of RESTful web services for its integration with the other components.
The aforementioned integration will facilitate the retrieval of the MR information (model
executables, descriptive information of the models, etc.). Appropriate authentication and
authorization mechanisms are being implemented in order to ensure that only authorized
persons have access to the content of the repository.

Component API Model Repository API

Version v0.1 Date 12/10/18

Notes Under development

Method

POST

storeModel

Description Stores the basic descriptive information of the model and returns
the id

Request Authentication

Content Type JSON

Query
Parameters

title: Title of the model (Required)
description: Description of the model (Not
required)
comment: Comments on the model (Not
required)
semtype: URL representing semantic
information about this model (not required)

JSON Object The JSON object required in the request body
must have all the above parameters (at least the
required ones)

Example

Response Status Codes 200: OK, 400: BAD REQUEST, 404: DOESN’T
EXIST, 500: SERVER ERROR

Content Type JSON

JSON Object The JSON object returned by method
storeModel has one key i.e. id, and one value,
which is associated with this key.

Example

Method

DELETE

deleteModelById

Description Deletes the descriptive information, the files, the parameters, and
property values of a model.

Request Authentication

Content Type JSON

Query
Parameters

id: Model id (required)

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 43 of 70

© BOUNCE Public

JSON Object The JSON object required in the request body
must have the id parameter

Example

Response Status Codes 200: OK, 400: BAD REQUEST, 404: DOESN’T
EXIST, 500: SERVER ERROR

Content Type JSON

JSON Object N/A

Example

Method

GET

getModelById

Description Returns the descriptive information stored under the id (title,
description, comment, semtype) and null when not existing

Request Authentication

Content Type JSON

Query
Parameters

id: Model id (required)

JSON Object N/A

Example

Response Status Codes 200: OK, 400: BAD REQUEST, 404: DOESN’T
EXIST, 500: SERVER ERROR

Content Type JSON

JSON Object The JSON object returned by method
getModelById has eight keys i.e. title,
description, comment, semtype, created_on,
created_by, modified_on and modified_by, and
eight values associated with those keys.

Example

Method

POST

storeParameter

Description Stores the parameter information of a model and returns the id

Request Authentication

Content Type JSON

Query
Parameters

model_id: id of the model to which the
parameter belongs (required)
name: parameter name (required)
description: Parameter description (not
required)
data_type: Parameter type e.g. number, string,
file (required)
unit: Units in which the parameter is represented
(only applicable if the parameter is a number)
(not required)
data_range: Data range of the parameter
(required)
default_value: Value to be used if a parameter
value is not provided to the tool
is_output: 1 if the parameter is output, 0 if it is
input (required)

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 44 of 70

© BOUNCE Public

comment: Comments on the parameter (not
required)
semtype: url Representing semantic information
about this parameter (not required)

JSON Object The JSON object required in the request body
must have all the above parameters (at least the
required ones)

Example

Response Status Codes 200: OK, 400: BAD REQUEST, 404: DOESN’T
EXIST, 500: SERVER ERROR

Content Type JSON

JSON Object The JSON object returned has one key i.e. id, and
one value associated with this key.

Example

Method

DELETE

deleteParameter

Description Deletes a certain parameter

Request Authentication

Content Type JSON

Query
Parameters

id: Model id (required)

JSON Object The JSON object required in the request body
must have id parameter

Example

Response Status Codes 200: OK, 400: BAD REQUEST, 404: DOESN’T
EXIST, 500: SERVER ERROR

Content Type JSON

JSON Object N/A

Example

Method

GET

getParametersByModelId

Description Returns the information of all the parameters of a given model

Request Authentication

Content Type JSON

Query
Parameters

model_id: The id of the model to which the
parameters belong (required)

JSON Object N/A

Example

Response Status Codes 200: OK, 400: BAD REQUEST, 404: DOESN’T
EXIST, 500: SERVER ERROR

Content Type JSON

JSON Object The keys of the JSON object returned are as
many as the different parameters belonging to
the model. Each value associated with a specific
key is represented by a nested JSON object. Each
key of the aforementioned nested JSON object
represents the column name of the parameter
entity and each value of the nested JSON object

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 45 of 70

© BOUNCE Public

represents the information of the corresponding
column.

Example

Method

POST

storeProperty

Description Stores the basic descriptive information of a property and returns
the id

Request Authentication

Content Type JSON

Query
Parameters

name: Name of the property (required)
description: Description of the property (not
required)
comment: Comments on the property (not
required)
semtype: url representing semantic information
about this property (not required)

JSON Object The JSON object required in the request body
must have all the above parameters (at least the
required ones)

Example

Response Status Codes 200: OK, 400: BAD REQUEST, 404: DOESN’T
EXIST, 500: SERVER ERROR

Content Type JSON

JSON Object The JSON object returned by method
storeProperty has one key, named id, and one
value that is associated with this key.

Example

Method

GET

getAllProperties

Description Returns all the properties and the corresponding descriptive
information stored (id, name, description, comment, semtype)

Request Authentication

Content Type JSON

Query
Parameters

No parameters required

JSON Object N/A

Example

Response Status Codes 200: OK, 400: BAD REQUEST, 404: DOESN’T
EXIST, 500: SERVER ERROR

Content Type JSON

JSON Object The keys of the JSON object returned are as
many as the different properties stored in the
MR. Each value associated with a specific key, is
represented by a nested JSON object.

Example

Method

GET

getPropertyById

Description Returns the descriptive information stored under the property id
(name, description, comment)

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 46 of 70

© BOUNCE Public

Request Authentication

Content Type JSON

Query
Parameters

id: Property id (required)

JSON Object N/A

Example

Response Status Codes 200: OK, 400: BAD REQUEST, 404: DOESN’T
EXIST, 500: SERVER ERROR

Content Type JSON

JSON Object The JSON object returned by method
getPropertyById has four keys i.e. name,
description, comment, semtype, and four values
associated with those keys.

Example

Method

POST

storePropertyValue

Description Stores the value of a property for a model and returns the id

Request Authentication

Content Type JSON

Query
Parameters

model_id: Model id (required)
property_id: Property id (required)
value: Property value (required)

JSON Object The JSON object required in the request body
must have all the above parameters

Example

Response Status Codes 200: OK, 400: BAD REQUEST, 404: DOESN’T
EXIST, 500: SERVER ERROR

Content Type JSON

JSON Object The JSON object returned by method
storePropertyValue has one key, named id, and
one value which is associated with this key

Example

Method

DELETE

deletePropertyValue

Description Deletes the property value for a certain model

Request Authentication

Content Type JSON

Query
Parameters

id: The id of the record which holds the property
value (required)

JSON Object N/A

Example

Response Status Codes 200: OK, 400: BAD REQUEST, 404: DOESN’T
EXIST, 500: SERVER ERROR

Content Type JSON

JSON Object

Example

Method getPropertyValuesByModelId

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 47 of 70

© BOUNCE Public

GET

Description Retrieves all the property – value pairs for a given model

Request Authentication

Content Type JSON

Query
Parameters

model_id: The id of the model that the property-
value pairs are associated with (required)

JSON Object N/A

Example

Response Status Codes 200: OK, 400: BAD REQUEST, 404: DOESN’T
EXIST, 500: SERVER ERROR

Content Type JSON

JSON Object The keys of the JSON object returned by method
getPropertyValuesByModelId are as many as the
different properties that describe or/and classify
the given model. Each value associated with a
specific key is represented by a nested JSON
object. The keys of the nested JSON object are
the name, description, comment, value,
semtype.

Example

Method

DELETE

deletePropertyById

Description Deletes the property of the given id and the corresponding values

Request Authentication

Content Type JSON

Query
Parameters

id: The id of the record which holds the
descriptive information of the property
(required)

JSON Object N/A

Example

Response Status Codes 200: OK, 400: BAD REQUEST, 404: DOESN’T
EXIST, 500: SERVER ERROR

Content Type JSON

JSON Object

Example

Method

POST

StoreReference

Description This method stores information of the reference. The reference is
associated with a model.

Request Authentication

Content Type JSON

Query
Parameters

model_id: The id of the model with which the
reference is associated (required)
title: Title of the reference (required)
type: Type of the reference (book, journal article,
etc.) (required)
author: Author(s) of the resource (required)
issued: Date of formal issuance (required)
citation: Bibliographic citation of the

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 48 of 70

© BOUNCE Public

resource (not required)
doi: Digital Object Identifier of the resource
pmid: PubMed Identifier (not required)

JSON Object The JSON object required in the request body
must have all the above parameters (at least the
required ones)

Example

Response Status Codes 200: OK, 400: BAD REQUEST, 404: DOESN’T
EXIST, 500: SERVER ERROR

Content Type JSON

JSON Object The JSON object returned has one key i.e. id, and
one value associated with this key.

Example

Method

DELETE

deleteReferenceById

Description This method deletes a specific reference

Request Authentication

Content Type JSON

Query
Parameters

id: The id of the reference (required)

JSON Object The JSON object required in the request body
must have the id parameter

Example

Response Status Codes 200: OK, 400: BAD REQUEST, 404: DOESN’T
EXIST, 500: SERVER ERROR

Content Type JSON

JSON Object

Example

Method

GET

getReferencesByModelId

Description Returns all the references of a given model

Request Authentication

Content Type JSON

Query
Parameters

model_id: The id of the model with which the
references are associated (required)

JSON Object N/A

Example

Response Status Codes 200: OK, 400: BAD REQUEST, 404: DOESN’T
EXIST, 500: SERVER ERROR

Content Type JSON

JSON Object The keys of the JSON object returned are as
many as the different references that are
associated with the given model. Each value
associated with a specific key is represented by a
nested JSON object.

Example

Method storeFile

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 49 of 70

© BOUNCE Public

POST

Description Stores the file information and returns the id

Request Authentication

Content Type JSON

Query
Parameters

model_id: The id of the model with which the file
is associated (required)
title: Title of the file (required)
description: Description of the file (not required)
kind: Defines what the file is (document, source
code, binary, etc.) (not required)
license: License associated with the file (not
required)
Sha1sum: Sha1 checksum of the file (not
required)
comment: comments on the file(not required)
engine: Engine for executing this file (not
required)
file: The actual file (blob) (required)

JSON Object The JSON object required in the request body
must have all the above parameters (at least the
required ones)

Example

Response Status Codes 200: OK, 400: BAD REQUEST, 404: DOESN’T
EXIST, 500: SERVER ERROR

Content Type JSON

JSON Object The JSON object returned by method storeFile
has one key i.e. id, and one value that is
associated with this key.

Example

Method

DELETE

deleteFile

Description Deletes a certain file

Request Authentication

Content Type JSON

Query
Parameters

id: File id (required)

JSON Object N/A

Example

Response Status Codes 200: OK, 400: BAD REQUEST, 404: DOESN’T
EXIST, 500: SERVER ERROR

Content Type JSON

JSON Object

Example

Method

GET

getFileById

Description Returns the file.

Request Authentication

Content Type JSON

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 50 of 70

© BOUNCE Public

Query
Parameters

id: File id (required)

JSON Object N/A

Example

Response Status Codes 200: OK, 400: BAD REQUEST, 404: DOESN’T
EXIST, 500: SERVER ERROR

Content Type File

JSON Object

Example

Requirements that selected software should meet:

• Be free and open source.
• Have an active community that supports it by building plug-ins and extensions.
• Follow the Model-View-Controller (MVC) paradigm.

4.8.2. Sequence diagram

Figure 21: Model’s repository sequence diagram

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 51 of 70

© BOUNCE Public

4.8.3. Deployment diagram

Figure 22: Model’s repository deployment diagram

4.9. In Silico Prediction Repository

4.9.1. Component and interfaces

The BOUNCE In Silico Prediction Repository (ISPR) will be a web-based application, capable of
persistently storing the predictions of the models developed within the BOUNCE project. Since
the in silico predictions may require many computational resources, especially when the
simulations involve multiscale data, the development of an ISPR in the context of the BOUNCE
project is of utmost importance. The input data of each simulation (biological status, medical
information sets, clinical information sets, contextual and psychosocial information sets, etc.),
the model used in the simulation, and the output data will be stored persistently after the
completion of the simulation scenario. Information related to the input (biological markers,
medical imaging, lifestyle, psychological status, etc.) and the output (predicted psychological
status, biological status or level of resilience of women with breast cancer) of all the simulations
conducted using the overall prediction model and the resilience trajectory prediction model will
be readily available through the ISPR for evaluation, comparison and validation. Consequently,
since all predictions will be stored in the ISPR, there will be no need for executing the same
simulation twice.
The key entities of the ISPR are the model prediction log, the experiment, and the subject. The
model prediction log refers to multiple experiments. The experiments are performed with the
same model each time, which is defined in the prediction log.
The basic principles of the ISPR are:

 The subject entity actually represents an instance of a subject e.g. a patient. Every
instance of a subject can be accompanied by a set of files. The data of the files are
internally stored in a file based repository.

 The in silico experiment entity consists of triples of input data – model information –
output data. The model that is used in an in silico experiment is not stated in the

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 52 of 70

© BOUNCE Public

experiment entity, but in the model prediction log entity in which the experiment
belongs.

 The in silico experiments are grouped per model in the model prediction log entity. All in
silico experiments that are part of the same model prediction log entity use the same
model.

Name In Silico Prediction Repository

Related use cases User scenarios 1-6

Due Date prototype: M21, first version: M24, second version: M32 first
implementation: M38

Location source
code

N/A

Responsibilities/
Functionality

This is the web-based component that will permanently host the
predictions of the models developed within the BOUNCE project.

Provided
Interfaces
[Interfaces
implemented by
the component]

Interface Type Description

Initial
Interface

GUI
Greet user and prompt them to go to login
screen to enter their credentials

Login
Interface

GUI
User is required to login to the system using
their credentials

Incorrect Login
Interface

GUI
User is notified that their login attempt was
unsuccessful and prompted to retry

Main
Interface

GUI
User is presented with the necessary choices
for CRUD procedures on the prediction log /
subject / experiment components

Creation
Interface

GUI

For each prediction log / subject /
experiment component (models,
parameters, etc.) and/or administrative data
(users, roles, etc.) the user is required to
complete a list of fields in a corresponding
screen and submit the form.

Content List
Interface

GUI

User is presented with a set of screens
containing the ISPR contents. By clicking on
specific buttons in each row the user can edit
(and update) or delete the row.

Edit
Interface

GUI

For each prediction log / subject /
experiment component (models,
parameters, etc.) and/or administrative data
(users, roles, etc.) the user is required to
correct a list of fields in a corresponding
screen and submit the form.

 Authentication
API

REST
An API for ensuring user authorization to use
ISPR.

DB API REST

API for data management of ISPR content
(data CRUD functions, file download)

Required Interface Type Description

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 53 of 70

© BOUNCE Public

Interfaces

Implementation Python, MySQL, Javascript, HTML, CSS

Third party
frameworks

Django, jQuery

Just like the BOUNCE MR, a user-friendly web interface and appropriate web services is being
developed for the ISPR in order to expose its content to the users or other software components.
Furthermore, pertinent authorization and authentication mechanisms will deny any
unauthorized access. Information related to the predictions of all the models developed within
the BOUNCE project will be stored.

Component API In Silico Prediction Repository API

Version v0.1 Date 12/10/18

Notes Under development

Method

POST

storePredictionLog

Description Stores the basic descriptive information of the model prediction log,
and returns the id of the model prediction log

Request Authentication

Content Type JSON

Query
Parameters

model_id: id of the model used in the prediction
log (required)
description: Description of the prediction log
(required)
model_url: The url where the model is located
(required)
comment: Comments on the prediction log (not
required)

JSON Object The JSON object required in the request body
must have all the above parameters (at least the
required ones)

Example

Response Status Codes 200: OK, 400: BAD REQUEST, 404: DOESN’T
EXIST, 500: SERVER ERROR

Content Type JSON

JSON Object The JSON object returned has one key i.e. id, and
one value which is associated with this key.

Example

Method

GET

getAllPredictionLogs

Description Returns the descriptive information of all the prediction logs stored
in ISPR (prediction log ids, description of the prediction log,
comments, etc.).

Request Authentication

Content Type JSON

Query
Parameters

No parameter required

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 54 of 70

© BOUNCE Public

JSON Object N/A

Example

Response Status Codes 200: OK, 400: BAD REQUEST, 404: DOESN’T
EXIST, 500: SERVER ERROR

Content Type JSON

JSON Object The keys of the JSON object returned are as
many as the different prediction logs stored in
the ISPR. Each value associated with a specific
key is represented by a nested JSON object.

Example

Method

GET

getPredictionLogById

Description Returns the descriptive information (description of the prediction
log, comments, etc.), of the given prediction log.

Request Authentication

Content Type JSON

Query
Parameters

id: Prediction log id (required)

JSON Object N/A

Example

Response Status Codes 200: OK, 400: BAD REQUEST, 404: DOESN’T
EXIST, 500: SERVER ERROR

Content Type JSON

JSON Object The JSON object returned has nine keys i.e. id,
description, model_id, model_url, comment,
created_on, created_by, modified_on and
modified_by, and nine values associated with
those keys.

Example

Method

GET

getPredictionLogByModelId

Description Returns the information related to the prediction log in which the
given model is used (prediction log id, description of the prediction
log, comments, etc.). The argument is the id of the model used in
the MR.

Request Authentication

Content Type JSON

Query
Parameters

id: Id of the model corresponding to the
Prediction log (required)

JSON Object N/A

Example

Response Status Codes 200: OK, 400: BAD REQUEST, 404: DOESN’T
EXIST, 500: SERVER ERROR

Content Type JSON

JSON Object The JSON object returned has nine keys i.e. id,
description, model_id, model_url, comment,
created_on, created_by, modified_on and

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 55 of 70

© BOUNCE Public

modified_by, and nine values associated with
those keys.

Example

Method

DELETE

deletePredictionLogById

Description Deletes the prediction log, the experiments included in the
prediction log and the reference links

Request Authentication

Content Type JSON

Query
Parameters

id: Prediction log id (required)

JSON Object N/A

Example

Response Status Codes 200: OK, 400: BAD REQUEST, 404: DOESN’T
EXIST, 500: SERVER ERROR

Content Type JSON

JSON Object

Example

Method

POST

storeExperiment

Description Stores the necessary and descriptive information of an experiment.
It returns the id of the stored experiment.

Request Authentication

Content Type JSON

Query
Parameters

PredictionLog_id: Id of the prediction log with
which the new experiment is associated
(required)
description: the description of the new
experiment (required)
subject_id_in: The id of the subject that is used
as an input to the new in silico experiment
(required)
subject_id_out: The id of the subject that is used
as an output to the new in silico experiment
(required)
status: the status of the in silico experiment
(NOT STARTED, ON PROGRESS, FINISHED
SUCCESSFULLY, FINISHED ERRONEOUSLY) (not
required)

JSON Object The JSON object required in the request body
must have all the above parameters (at least the
required ones)

Example

Response Status Codes 200: OK, 400: BAD REQUEST, 404: DOESN’T
EXIST, 500: SERVER ERROR

Content Type JSON

JSON Object The JSON object returned has one key named id,
and one value which is associated with this key.

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 56 of 70

© BOUNCE Public

Example

Method

GET

getAllExperimentsByPredictionLogId

Description Returns information of all the experiments which belong to a given
prediction log.

Request Authentication

Content Type JSON

Query
Parameters

PredictionLog_id: Id of the prediction log that the
new experiment is associated with (required)

JSON Object N/A

Example

Response Status Codes 200: OK, 400: BAD REQUEST, 404: DOESN’T
EXIST, 500: SERVER ERROR

Content Type JSON

JSON Object The keys of the JSON object returned are as
many as the different experiments that belong
to the given prediction log. Each value associated
with a specific key is represented by a nested
JSON object.

Example

Method

GET

getExperimentById

Description Returns the experiment and the related information stored under
the id (description, subject_id_in, subject_id_out, status, comment,
etc.)

Request Authentication

Content Type JSON

Query
Parameters

id: Experiment id (required)

JSON Object N/A

Example

Response Status Codes 200: OK, 400: BAD REQUEST, 404: DOESN’T
EXIST, 500: SERVER ERROR

Content Type JSON

JSON Object The JSON object has eleven keys named id,
PredictionLog_id, description, subject_id_in,
subject_id_out, status, comment, created_on,
created_by, modified_on and modified_by, and
eleven values associated with those keys.

Example

Method

GET

getExperimentStatusById

Description Returns the status of the experiment.

Request Authentication

Content Type JSON

Query
Parameters

id: Experiment id (required)

JSON Object N/A

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 57 of 70

© BOUNCE Public

Example

Response Status Codes 200: OK, 400: BAD REQUEST, 404: DOESN’T
EXIST, 500: SERVER ERROR

Content Type JSON

JSON Object The JSON object returned has one key named
status, and one value is associated with this key.

Example

Method

GET

getExperimentsByStatus

Description Returns all the experiments that are on a given status

Request Authentication

Content Type JSON

Query
Parameters

status: the status of the in silico experiment
(NOT
STARTED, ON PROGRESS, FINISHED
SUCCESSFULLY, FINISHED ERRONEOUSLY)
(required)

JSON Object N/A

Example

Response Status Codes 200: OK, 400: BAD REQUEST, 404: DOESN’T
EXIST, 500: SERVER ERROR

Content Type JSON

JSON Object The keys of the JSON object returned are as
many as the different experiments that are on a
given status. Each value associated with a
specific key is represented by a nested JSON
object.

Example

Method

PUT

updateExperimentStatus

Description Updates the status of a given experiment.

Request Authentication

Content Type JSON

Query
Parameters

id: Experiment id (required)
status: the status of the in silico experiment
(NOT
STARTED, ON PROGRESS, FINISHED
SUCCESSFULLY, FINISHED ERRONEOUSLY)
(required)

JSON Object The JSON object required in the request body
must have the id and status parameters.

Example

Response Status Codes 200: OK, 400: BAD REQUEST, 404: DOESN’T
EXIST, 500: SERVER ERROR

Content Type JSON

JSON Object

Example

Method deleteExperimentById

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 58 of 70

© BOUNCE Public

DELETE

Description Deletes the experiment.

Request Authentication

Content Type JSON

Query
Parameters

id: Experiment id (required)

JSON Object N/A

Example

Response Status Codes 200: OK, 400: BAD REQUEST, 404: DOESN’T
EXIST, 500: SERVER ERROR

Content Type JSON

JSON Object The JSON object returned has one key named
status, and one value is associated with this key.

Example

Method

POST

storeSubject

Description Stores information related to a subject.
Returns the id of the created subject

Request Authentication

Content Type JSON

Query
Parameters

description: Description of the state of the
subject (required)
subject_external_id: External id of the subject
(not required)
comment: Comments on the subject (not
required)

JSON Object The JSON object required in the request body
must have all the above parameters (at least the
required ones)

Example

Response Status Codes 200: OK, 400: BAD REQUEST, 404: DOESN’T
EXIST, 500: SERVER ERROR

Content Type JSON

JSON Object The JSON object returned has one key named id,
and one value is associated with this key.

Example

Method

DELETE

deleteSubjectById

Description Deletes a subject.

Request Authentication

Content Type JSON

Query
Parameters

id: Subject id (required)

JSON Object N/A

Example

Response Status Codes 200: OK, 400: BAD REQUEST, 404: DOESN’T
EXIST, 500: SERVER ERROR

Content Type JSON

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 59 of 70

© BOUNCE Public

JSON Object

Example

Method

GET

getAllSubjects

Description Returns all the subjects.

Request Authentication

Content Type JSON

Query
Parameters

No parameters required

JSON Object N/A

Example

Response Status Codes 200: OK, 400: BAD REQUEST, 404: DOESN’T
EXIST, 500: SERVER ERROR

Content Type JSON

JSON Object The keys of the JSON object returned are as
many as the different subjects that are stored in
the ISPR. Each value associated with a specific
key is represented by a nested JSON object.

Example

Method

GET

getSubjectById

Description Returns the subject and the related information stored under the
id.

Request Authentication

Content Type JSON

Query
Parameters

id: Subject id (required)

JSON Object The JSON object required in the request body
must have the id parameter.

Example

Response Status Codes 200: OK, 400: BAD REQUEST, 404: DOESN’T
EXIST, 500: SERVER ERROR

Content Type JSON

JSON Object The JSON object returned by method
getSubjectById has eight keys named id,
description, subject_external_id, comment,
created_on, created_by, modified_on and
modified_by, and eight values associated with
those keys.

Example

Method

POST

storeFile

Description Stores the file information and returns the id.

Request Authentication

Content Type JSON

Query
Parameters

subject_id: Id of the subject with which the file is
associated (required)
title: Title of the file (required)
description: Description of the file (not required)

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 60 of 70

© BOUNCE Public

kind: Defines what the file is (document,
spreadsheet, csv, etc.) (not required)
Sha1sum: Sha1 checksum of the file (not
required)
Comment: Comments on the file (not required)

JSON Object The JSON object required in the request body
must have all the above parameters (at least the
required ones)

Example

Response Status Codes 200: OK, 400: BAD REQUEST, 404: DOESN’T
EXIST, 500: SERVER ERROR

Content Type JSON

JSON Object The JSON object returned has one key i.e. id and
one value associated with this key.

Example

Method

DELETE

DeleteFile

Description Deletes a certain file.

Request Authentication

Content Type JSON

Query
Parameters

id: File id (required)

JSON Object N/A

Example

Response Status Codes 200: OK, 400: BAD REQUEST, 404: DOESN’T
EXIST, 500: SERVER ERROR

Content Type JSON

JSON Object

Example

Method

GET

getFileById

Description Returns the requested file.

Request Authentication

Content Type JSON

Query
Parameters

id: File id (required)

JSON Object N/A

Example

Response Status Codes 200: OK, 400: BAD REQUEST, 404: DOESN’T
EXIST, 500: SERVER ERROR

Content Type File

JSON Object

Example

Requirements that selected software should meet:

• Be free and open source.
• Have an active community that supports it by building plug-ins and extensions.
• Follow the Model-View-Controller (MVC) paradigm.

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 61 of 70

© BOUNCE Public

4.9.2. Sequence diagram

Figure 23: In Silico Prediction repository sequence diagram

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 62 of 70

© BOUNCE Public

4.9.3. Deployment diagram

Figure 24: In Silico Prediction Repository deployment diagram

4.10. Execution Engine

4.10.1. Component and interfaces

Name Execution Engine

Related use cases User scenarios 1-6

Due Date First version M24, Final version M40

Location source
code

Not available yet

Responsibilities/
Functionality

The execution engine is responsible for the execution of a specific model
over a selected set of data. Models to be supported must be written as
scripts in python3 or R version 3.5 (supporting the Bioconductor library)
or executables from C, C++ (gcc version 7.3.0) or Java v8 for Ubutnu
18.04 64 bit. It will provide an API (through the models API) to request
an execution and monitor the progress of an execution. The execution
engine will interact with the Data API to retrieve data, with the Models
API to retrieve a model and with the In Silico prediction repository to
store the results of an execution.

Provided
Interfaces
[Interfaces
implemented by
the component]

Interface Type Description

Executing
Models

GUI A programmatic interface used by the
decision support tool for execution of
model(s).

Visualization
of Results

GUI A user interface will provide an overview of
the analysis’ results.

Required Interface Type Description

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 63 of 70

© BOUNCE Public

Interfaces
[Interfaces used by
the component]

Data
repository API

REST API for the retrieval of the data

Models
repository API

REST API to communicate with the models repository
(retrieve model)

In Silico
Prediction
Repository API

REST API to store results

Implementation Java and bash commands

Third party
frameworks

4.10.2. Sequence diagram

Figure 25: Execution Engine sequence diagram

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 64 of 70

© BOUNCE Public

4.10.3. Deployment diagram

Figure 26: Execution Engine deployment diagram

4.11. Decision Support System

4.11.1. Component and interfaces

Name Decision Support System

Related use cases All

Due Date First version M24, Final version M40

Location source
code

Not available yet

Responsibilities/
Functionality

Decision Support System is the final online tool that produces (a) an
overall “resilience predictor” score, and (b) scores for specific
psychological variables that are important for resilience and adaptation
to cancer. The tool will replace the Temporary Research Tool and will be
able to retrieve data about the individual scores on each scale and the
combination of scores in different biomedical and psychosocial variables
(coming from the current and/or possible previous assessments). The
tool should also be able to produce (a) an overall “resilience predictor”
score, and (b) scores for specific psychological variables that are
important for resilience and adaptation to cancer.

Provided
Interfaces

Interface Type Description

Initial
Interface

GUI Greet user and prompt them to go to login
screen to enter their credentials

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 65 of 70

© BOUNCE Public

[Interfaces
implemented by
the component]

Login Interface GUI User is required to login to the system using
their credentials

Entering Data GUI A user interface used by the expert for
entering data.

Executing
Models

GUI A user interface used by the expert for
selection and execution of model(s).

Visualization
of Results

GUI A user interface will provide an overview of
the analysis’ results.

Store Results GUI A user interface will provide the option to
the user to store the results (at the In Silico
Prediction Repository)

Required
Interfaces
[Interfaces used by
the component]

Interface Type Description

Authentication
API

REST An API for ensuring user authorization to use
the system

Data
repository API

REST API for data management (retrieve data)

Models
repository API

REST API to communicate with the models repository
(retrieve model)

Execution
Engine API

REST API to request an execution of the selected
model over the selected data. The API will also
provide information about the status of the
execution

In Silico
Prediction
Repository API

REST API to store results

Implementation JavaScript, Java Web Application

Third party
frameworks

• Spring Framework (Apache 2.0 license).
• Hibernate (GNU Lesser General Public License).

As the implementation of this component matures, more details will be described in this
deliverable about the exact API calls and the services provided.

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 66 of 70

© BOUNCE Public

4.11.2. Sequence diagram

Figure 27: Decision Support System sequence diagram

4.11.3. Deployment diagram

Figure 28: Decision Support System deployment diagram

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 67 of 70

© BOUNCE Public

5. Initial BOUNCE reference Architecture
The main challenge of the BOUNCE architecture is the interoperability of systems, tools and
services that are made available to the users of the environment with the ultimate goal of secure,
transparent, and unobtrusive sharing of data and functionality. Most of the currently identified
scenarios in the project are focused on data access and processing of data but there are also
tasks involving computational jobs and visualization. In order to fulfil the requirements imposed
by these scenarios a scalable and flexible environment is needed and the following technologies,
which have gained momentum in the recent years, will be adopted: (i) Web/REST Services
technologies and (ii) Semantic Web technologies.
The BOUNCE platform is designed using a multi-tier architecture (security tier, semantics tier
and applications tier). Every component/service designed within BOUNCE can be mapped to one
of these layers (or spanned over multiple layers). Modules and components designed and built
within the project should seamlessly operate through well-defined interfaces on different levels
(i.e. interoperability on the level of IT-protocol, data format, information content, etc.).

Figure 29: Initial BOUNCE Architecture

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 68 of 70

© BOUNCE Public

Figure 29 shows the main components of BOUNCE architecture and their interconnections. As
shown in figure, patient’s data will be collected via the Noona tool and stored within the hospital
premises. Healthcare professionals, such as physicians, research nurses and psychologists, will
be able to access the Noona tool and provide clinical assessment data for the patients. The data
anonymizer module anonymizes the collected data and pushes it into the BOUNCE data lake (via
the Data API). Then the semantic tier modules clean and harmonize the data that is accessible
with the Data API. Health professionals have also access to the decision support tool and in the
first stages of the development to the temporary research-supporting tool. Temporary Research
Supporting Tool is the short-term internal project tool to facilitate data exploration and
visualization of data and scales. Decision Support System is the final online tool that produces
(a) an overall “resilience predictor” score, and (b) scores for specific psychological variables that
are important for resilience and adaptation to cancer. The Decision Support System will replace
the Temporary Research Tool and will be able to retrieve data, apply prediction model(s) and
view/store the results of the analysis. Furthermore, model developers can upload models to the
models repository.

6. Conclusions
This document aims to provide recommendations and guidelines that will ensure the integration
and interoperability of software components within the BOUNCE technological environment.
Software integration is a laborious and challenging task and therefore analysis of the user
requirements is necessary in order to identify the objectives of the system under development
and how these can be accomplished. In this sense, this document has been prepared based on
the input given by the “Description of Annex” document, the Deliverable D1.3. (BOUNCE
methodology) and deliverable D1.2 (Requirements & Usage Scenarios).
BOUNCE aims to provide a framework of tools, which can be easily interconnected in different
configurations, tailored to the needs of different environments (e.g. hospitals) and end-users.
To obtain high flexibility, loose coupling and service-orientated approaches are chosen. On the
implementation level, it was decided that BOUNCE would rely on REST APIs as communication
protocol. Focus is on interoperability and interfacing in the architectural description and for that
reason modules and components designed and built within the project should seamlessly
operate through well-specified interfaces on different levels (i.e. interoperability on the level of
IT-protocol, data format, information content, etc.).
Deliverable 5.1 reports in detail the BOUNCE components using uniform templates for
description (Appendix A – Template for component description), sequence interfaces and
deployment interfaces (including UML component diagrams). Furthermore, the mature
components and the under development components reported the detailed rest interfaces
(Appendix B – Template for REST service specification). Since the implementation of some
components (e.g. decision support system) has not started yet, we cannot currently provide
details about their REST APIs. Nevertheless, the Appendix A – Template for component
description will be used during the development of all the components ensuring a smooth final
integration.
This document is a snapshot of the evolving BOUNCE architecture as the project progresses. It
should be noted that BOUNCE takes an iterative approach towards the design of the
architecture, so this first iteration does not by any means offers the final solution. We consider
the deliverable D5.1 of BOUNCE a live document that will be updated during the software
lifecycle.

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 69 of 70

© BOUNCE Public

Appendixes

Appendix A – Template for component description

Name

Related use cases [Use the identifiers of the use cases of D1.2]

Due Date [Due dates for prototype, first version etc.]

Location source
code

[Link to source code]

Responsibilities/
Functionality

[Brief summary of the responsibilities and functionality]

Provided
Interfaces
[Interfaces
implemented by
the component]

Interface Type Description

 [Type of
interface
e.g. GUI,
Rest
etc.]

[Brief description of interface, if the interface is
a programmatic interface please provide a
detailed specification in Appendix …]

Required
Interfaces
[Interfaces used by
the component]

Interface Type Description

Implementation [Which technologies will be used to implement the component?]

Third party
frameworks

[List any third party software frameworks / systems that you which to
integrate into your component including the license under which it is
provided]

D5.1 BOUNCE Conceptual & Reference Architecture
Grant Agreement no. 777167 Page 70 of 70

© BOUNCE Public

Appendix B – Template for REST service specification

Component API

Version Date

Notes

Method

Description

Request Authentication

Content Type

Query
Parameters

JSON Object

Example

Response Status Codes

Content Type

JSON Object

Example

Method

Description

Request Authentication

Content Type

Query
Parameters

JSON Object

Example

Response Status Codes

Content Type

JSON Object

Example

Method

Description

Request Authentication

Content Type

Query
Parameters

JSON Object

Example

Response Status Codes

Content Type

JSON Object

Example

